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Diffusion and Einstein Relation for a Massive Particle 
in a One-Dimensional Free Fas: Numerical Evidence 
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A computer  simulation is used to investigate the motion of a marked particle of 
mass M in a free gas of particles with mass  m = 1, for large times. Previous 
results seem to indicate a non-Wiener behavior for the rescaled trajectory when 
M ~ m. The results reported here, with better statistics, are compatible with the 
Wiener hypothesis. The Einstein relation between mobility and diffusion coeffi- 
cient is also investigated. The results indicate that it holds both for M = m and 
for M C m .  
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1. I N T R O D U C T I O N  

In recent years increasing attention has been devoted to the study of 
mechanical models of Brownian motion. It is now well understood that 
Brownian motion can be obtained just by space-time rescaling, without 
changes in the dynamics. A simple model for which the derivation can be 
carried out in a mathematically rigorous way was introduced by Harris (1) 
and studied by Harris and Spitzer. (2) It is the motion of a marked particle 
in a one-dimensional gas of identical ideal particles undergoing only elastic 
collisions. From the point of view of mechanics it is a very special model, 
since all velocities are preserved. This is actually the reason why the model 
is tractable, and one can prove that the normalized displacement of the 
marked particle is asymptotically Wiener if the system is in an equilibrium 
state. (For other initial states one can get a different results; see ref. 3.) 
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The next obvious step is that of allowing the mass of the marked 
particle M to be different from the common mass m of the other particles. 
In this case velocities change when the marked particle collides, and 
the mathematical investigation of the model is much harder. Never- 
theless, some rigorous results have been recently obtained by Sinai and 
Soloveichik (4) and Sz/tsz and Tdth. (5~ They considered a state for which the 
marked particle with mass M (hereafter called "massive test particle" or 
m.t.p.) is at the origin, with velocity V distributed according to a Maxwell 
distribution with inverse temperature fl, and the distribution of the other 
particles (with mass m, hereafter called "light" particles, though they may 
be heavier) is independent of V and is a free gas distribution with the same 
temperature. The state constructed in this way is an equilibrium state with 
respect to the composition of the usual dynamics with the shift that brings 
back the m.t.p, at the origin (see refs. 4 and 5 for details). It was proved 
in refs. 4 and 5 that the normalized displacement ~, - qo(t)/x/t of the m.t.p. 
is asymptotically equal to the difference of two Gaussian variables, which, 
however, are in general dependent. Also, bounds for the limiting variance 
of ~t were obtained. 

The question of whether ~t is asymptotically Wiener remains open, 
and computer investigations were made in order to get some insight. In a 
recent paper (6) it was claimed that the process ~, is not asymptotically 
Gaussian for M-r m. Other numerical evidence (7) apparently supports the 
opposite conclusion, though the method used here in computing the dis- 
tribution of i t  is doubtful, since, in contrast to the method used in ref. 6, 
only short runs were allowed. This can hide the effects of long-time tails, 
which could be responsible for the possible non-Wiener character of the 
process. 

In order to get a definite answer, we performed a numerical simula- 
tion, which is similar in method to that of ref. 6, but was carried out for 
longer times and with better statistics. In addition to studying the distribu- 
tion for fixed times, we also compared the exit time distribution with the 
Wiener one. It is reasonable to expect that the exit time distribution is a 
more reliable test, since it depends on the global behavior of the trajectory. 

We also tested the validity of the Einstein relation between mobility 
and dispersion, when the m.t.p, is subject to a small constant force. Validity 
of the Einstein relation may be considered as additional evidence of the 
diffusive character of the motion. 

We set the inverse temperature fl equal to 1, the light particle density 
equal to 1, and m = 1. We considered several values of the mass M, both 
larger and smaller than 1. Our results can be summarized as follows. 

The dispersion of the normalized displacement ~t depends on the mass 
M in a way that is in accordance with the results of ref. 6, except for small 
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values of M (Section 3). The hypothesis of a Gaussian asymptotic distribu- 
tion for ~t cannot be rejected for all values of the mass M that were 
considered (Section 3). Moreover, the exit time distribution is in accordance 
with the Wiener exit time distribution. 

The Einstein relation has been tested for M =  0.5, 2, and 4, and for 
M = m  = 1, for comparison. The computer data show that it holds in all 
cases within the presumable statistical errors (Section 4). As additional 
evidence, one might consider the Gaussian-like decay of the tail of the 
distribution of the i t  found in ref. 3. 

In conclusion, we may say that our results support the hypothesis that 
the process ~ r ( t ) - -x / - ) -~ ( tT)=qo( tT) / , , fT  is, for large T, asymptotically 
Wiener for M r m. 

2. N U M E R I C A L  M E T H O D  

The initial configuration was obtained in the following way. We set the 
m.t.p, at 0 with a velocity chosen at random, according to the appropriate 
distribution (with density [exp(-v2/2M)]/(2~zM)l/2), and generated the 
random positions of the light particles in a fixed interval IL = ( - L ,  L) by 
simulating a Poisson point process with intensity p =  1 (i.e., distances 
between neighboring particles were chosen independently according to the 
exponential distribution with parameter p = 1). Finally, the light particles 
were given standard Gaussian independent velocities. 

To observe long runs, one has to find a way of taking into account the 
random flux of the particles that enter the interval I L from the outside. If 
this is done, the evolution can go on until the m.t.p, reaches +L ,  that is, 
assuming diffusive behavior, for a time of O(L2). Our choice of L is fixed 
and is L = 400. 

Since for our equilibrium state the distribution of the light particles is 
a free gas equilibrium state, we know the distribution of the positive 
(negative) velocity particles that enter at + L  ( - L ) .  In the variables u, ~, 
where u is the absolute value of the velocity and r the entrance time, the 
distribution has density 

f(u, r ) =  (1/=) e x p ( -  U2/2) e x p [ -  r/(2~) 1/2 ] 

For  each boundary point + L  we generated a finite sequence of random 
entrance times and velocities, which were kept in a "waiting fist": a particle 
with entrance time ~ is taken into account only for times t >~ r. 

To spare computer time, we reduced the number of particles that the 
computer takes into account to determine collisions by the following 
device. We take an inner interval It with center at 0 and semilength I<  L 
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("barrier") around the position of the heavy particle, i.e., an inner interval 
of length l < L .  The particles in ( - L , L )  and in the waiting list are 
classified as "in particles" (those that are inside the barrier or are going to 
be inside within some fixed time i, and "out particles" (the other ones). At 
time t-, or at the first time the m.t.p, reaches the barrier, the evolution is 
stopped and the barrier is updated as follows. We take a new interval I '  
with center at the new position of the m.t.p., and take as "in particles" 
those that are inside I '  or are going to be within time t-. The semilength l '  
of I '  is the minimum between 1 and the distance of the position of the m.t.p. 
from the border __ L. Of course, the waiting list is always kept long enough 
so that the last particle will enter ( - L ,  L) at a time larger than [. The 
barrier is just a way of keeping track of the evolution and adds no new 
stochasticity. For our choice of L, which was fixed at L = 400, we could 
always follow the initial configuration up to times of the order of 10,000, 
i.e., the m.t.p, never reached the border -4-L before this time. 

Computations were made on a Microvax II. The influence of the 
random number generator is briefly discussed in the concluding remarks. 

3. DEPENDENCE OF THE DIFFUSION COEFFICIENT 
ON THE M A S S  A N D  TEST OF THE WIENER CHARACTER 
OF THE PROCESS 

3.1. Di f fusion Coef f ic ient  As a Function of the Mass 

The asymptotic diffusion coefficient 

D M - ~  lim E ~_~2 
t ~  t 

was computed in the following way. We took runs for a time 10 4 and 
recorded the values of i ,  at the times t~= iT, T =  10 3. We then computed 
the sample averages of the quantities (~,,-~,,_1)2/T and expressed DM as 
the average of D ~ -  (4 , , -  2 T ~t,_l)/ , i = 1  ..... 10 (ergodic average). The 
sample number N is in all cases larger than 103. Computer data show that 
the correlation coefficient between different increments ~,-~,,_~ is very 
small, of the order of 10 -3. Table I shows the computed values, with the 
standard deviation (the square root of the empirical variance of D ~ )  and 
the number of runs N. The behavior of the sample averages of ~,~ as a 
function of tg is linear with very good approximation, as shown by Fig. 1, 
corresponding to the case M = 2, N = 1,000. 

The behavior of the diffusion coefficient DM as a function of M is 
shown in Fig. 2. The theoretical lower and upper bounds for our choice of 
the parameters a r e  (7~/g) 1/2 and (2/~) 1/2. There is clear evidence that DM 
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Fig. 1. 

0 , i , i = i , i , i , l , i = i 

0 1000 3000 5000 7000 9000 11000 

(O)  Plot of the averages over 103 runs of ~2,/t, for M = 2 .  The line is the linear fit. 
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depends on the mass and tends to the lower bound for large M. Our results 
differ from those of ref. 6 in that for small values of the mass we do not 
observe a tendency to the upper bound D1. Instead, it appears that for 
M =  0.2 and M =  0.02, D~t is lower than for M =  0.5, and it may be that 
for M-~  0, DM does not tend to the value for M = 0, which should be the 
same as for M =  1. This would be hard to check, however, because with 
our computation method small values of M require, very long computer 
times. 

3.2. Test  of  the  Gaussian C h a r a c t e r  of  ~ ( t )  

We have tested the Gaussian character of ~.(t) for large times by 
making a ;(2 test. Table II reports the computed values of Z 2 for 48 degrees 
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of freedom for different choices of the mass M and of the time t. The number 
N of runs varies, but N/48 is large enough in all cases. The dispersion of 
the reference Gaussian distribution is taken equal to the computed one, 
given by Table I. 

To estimate the significance of the results, one should compare with 
the reference value Z2 p (for 48 degrees of freedom), defined by the 
equality p(z2 > 2 Z I - p ) = P ,  where P corresponds to the reference 
(Gaussian) distribution for ~(t). Here are some values: for p=0 .05 ,  
Z~_p=65.15; for p=0 .1 ,  2 = 2 =47.33. Z l -p  60.9; and f o r p = 0 . 5 ,  Zl p 

3.3 Test  of  t h e  Exit  T i m e  D i s t r i b u t i o n  

For the one-dimensional Wiener process starting at 0 the distribution 
of the exit time from the interval [ - 1 ,  1 ] is known (8) to have a distribu- 
tion function 

4 ~ 1 7 6  [ ~2 1 
F ( / ) =  1 - T j ~ o  2 ~ - i - e x  p - - ~ - ( 2 j +  1)2t 

We have tested the hypothesis that F(t) is the distribution of the exit 
time from the interval [ - 5 0 ,  50], properly rescaled. The test is very 
sensitive to the value of the diffusion coefficient that is assumed for the 
reference Wiener process. For  M =  1 we took the theoretical value of DM. 
For  M =  0.5, 2, 4 we looked for the value of DM, around the computed 
value of Table I, which gave the best Z 2 value. It turns out that the value 
of DM obtained in this way is always within one standard deviation from 
the value of Table I. In addition to the Z 2 test, we also made a 
Kolmogorov Smirnov test for the same value of Da4. 

In Table III we report on the left the results of the Z 2 test and the 
values of Z2.95 for k degrees of freedom, denoted by 2 X0.9s, k. On the right we 
give the results of the Kolmogorov-Smirnov (KS) test and the critical 
values D~v.o.os, where N is the number of observations and 0.05 is the 
significance level. For  M = 0 . 5 ,  2, 4 the test was made with a reference 

Table  III 

M DM N Z 2 Z02.95,k k KS test DN, o.05 

0.5 0.746 9941 68.47 100.76 79 0.007 0.014 
1 0.798 3082 70.554 101.9 80 0.015 0.024 
2 0.732 3121 62.11 100.76 79 0.02 0.024 
4 0.657 3140 88.58 98.49 77 0.02 0.024 
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Gaussian distribution with the computed empirical dispersion given by 
Table I. It is clear that, with a level of significance of 5 %, the Wiener 
hypothesis cannot be rejected. 

4. CHECK OF THE EINSTEIN RELATION 

The "Einstein relation" is a proportionality law discovered by Einstein 
between the mobility a of the test particle for vanishing force and the 
diffusion coefficient D'  

a =  lim #(E) /~D 
E~o E 2 

Here/3 = 1/kT is the inverse temperature,/~(E) = limt_~ ~ [E(qg(t))/t] is the 
drift, with applied esternal field E, and D = l im ,~  0o [E(qo(t))2/t] is the 
diffusion coefficient computed for the equilibrium measure (E = 0). 

The validity of the Einstein relation is believed to be connected to 
diffusive behavior for zero force, at least at the level of physical heuristics. 
The mathematical analysis was carried out only for some simple models, 
for which one can find a unique stationary nonequilibrium state for the 
environment. (9) If the stationary nonequilibrium state is not known or is 
not unique, it seems that there are problems with computer simulations, 
since the drift might depend on the choice of the initial distribution. The 
careful analysis carried out in ref. 9 shows, however, that the initial 
distribution should be the equilibrium state for zero field (E = 0). That is, 
the stationary nonequilibrium state that is relevant for the Einstein relation 
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Fig. 3. The two lines are the best fit of the points that correspond to the sample average of 
qg(t)/Et for E =  0.04 al"~d E =  0.02. The sample number is N =  500. 
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Table IV 

M ElM = 0.01 ElM = 0.005 ElM = 0.0025 

2 0.354 0.347 0.372 

4 0.351 0.357 0.277 

is the one obtained as the limit as t ~ oo of the evolution of the equilibrium 
(E = 0) state. 

So for checking the Einstein relation the initial distribution was 
generated exactly as described in Section 2. The results show that the linear 
behavior for the displacement sets in fairly soon for the values of E that 
were considered. (One can in fact expect that relaxation to the unique 
stationary state does not depend significantly on E for small E.) Moreover, 
the average displacement divided by E, ~_(qe(t))/E, is linear in t, and 
independent of E for small E. 

Figure 3 shows the plot of the average value (over the sample) 
(qg(t)/E) for M =  4 and E =  0.04, 0.02. Table IV shows the results for the 
mobility, computed as the sample average (Y~i [q~(ti)/Eti] ), for M = 2, 4 
and different values of E. The standard deviation corresponds to the 
empirical dispersion of qg(t)/t, which for our values of E turns out to be 
equal to the dispersion D ~  of Table I, i.e., for the equilibrium state with 
E =  0, within the statistical errors. 

5. C O N C L U D I N G  R E M A R K S :  TEST OF THE R A N D O M  
N U M B E R  GENERATOR 

The reliability of computer simulations of random processes depends 
of course on how good the random number generator is. We used the 
random number generator of Microvax II, giving independent random 
numbers uniformly distributed between 0 and 1. 

It is important for us that long sequences of outputs of the generator 
can be considered as independent. We tested the independence of sequences 
by a permutation test for groups of four variables. (1~ For a sequence of 
8 x 105 outputs, the result of a Z 2 test (with 23 degrees of freedom) gives a 
7~ 2 value of 22.654, indicating that the generator is good enough for our 
purposes. 

One can also expect that the distribution of the "random output" 
given by the generator is not accurate near the boundary points 0 and 1. 
A way of testing the accuracy near the boundary points, as well as indepen- 
dence, is to check the arcsine distribution for the fraction of the integers k 
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for which the sum ~2~= 1 ( ~ i -  1/2), k = 1 ..... N, is posit ive,  for large N. The 
arcsine d i s t r ibu t ion  gives a large weight  to b o u n d a r y  points ,  and  enhances  
possible  anomal ies  in the d i s t r ibu t ion  of long sequences af ~j close to the 
ext reme points .  A test made  for N =  1.5 x 106 showed that  the weight of 
the region near  the b o u n d a r y  po in ts  is wha t  it should  be. In  par t icular ,  
the d i s t r ibu t ion  near  the b o u n d a r y  po in ts  is symmetr ic  with very 
good  accuracy.  A )~2 test for 100 degrees of f reedom gives 110.79 
)i2 

( o.95,100 = 124.3). 
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